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ABSTRACT
We describe an optimal randomized MapReduce algo-
rithm for the problem of triangle enumeration that re-

quires O
(
E3/2/(M

√
m)
)

rounds, where m denotes the ex-

pected memory size of a reducer and M the total available
space. This generalizes the well-known vertex partitioning
approach proposed in (Suri and Vassilvitskii, 2011) to multi-
ple rounds, significantly increasing the size of the graphs that
can be handled on a given system. We also give new theo-
retical (high probability) bounds on the work needed in each
reducer, addressing the “curse of the last reducer”. Indeed,
our work is the first to give guarantees on the maximum
load of each reducer for an arbitrary input graph. Our ex-
perimental evaluation shows the scalability of our approach,
that it is competitive with existing methods improving the
performance by a factor up to 2×, and that it can signifi-
cantly increase the size of datasets that can be processed.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Design, Experimentation, Algorithms

Keywords
Triangle Enumeration, MapReduce, Graph Mining

1. INTRODUCTION
We are living in a flood of data. These data can be usu-

ally represented as graphs such as social networks, interac-
tion networks, road networks and so on. For example, in the
most famous social network service Facebook, there are 1.23
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billion monthly active users and they form a huge friendship
network [12]. Because of the enormity of these networks, it is
hard to mine meaningful information from them. Recently,
several graph data mining problems have been intensively
studied. Especially, the triangle enumeration problem is re-
garded as one of the fundamental graph mining problems
because of its various applications. In a social network, for
example, the triangle enumeration problem is used for de-
tecting sybil accounts and measuring content quality [2, 41].
On the web, it is used for finding spam pages and uncovering
hidden thematic layers [2, 11]. Also, the triangle enumer-
ation problem is a tool for solving the following problems:
truss decomposition which finds k-trusses of a graph for all k
where a k-truss is a subgraph such that every edge is in (k-2)
triangles [36]; triangular vertex connectivity which finds all
triangularly connected vertex pairs [31]. The importance of
these problems and their applications have been introduced
in many previous works [6, 8, 11, 37].

Triangle enumeration has been widely studied in the last
years, in particular in sequential platforms [17, 28, 7, 5].
However, as the graph size continues to increase, it is effec-
tively impossible to enumerate triangles in massive graphs.
One of the methods to deal with such large graphs is to ex-
ploit recent parallel programming paradigms. In particular
MapReduce [10], and its open source version Hadoop [16],
has emerged as a de facto standard framework for process-
ing massive data sets on large scale parallel platforms, such
as clusters of commodity PCs. Informally, a MapReduce al-
gorithm transforms an input set of key-value pairs into an
output set of key-value pairs in a number of rounds, where
in each round each pair is first individually transformed into
a set of new pairs (map step), then grouped by key (shuffle
step), and finally all values associated with the same key are
processed, separately for each key, producing the next new
set of key-value pairs (reduce step).

The triangle enumeration problem has then been studied
in MapReduce [29, 1, 34]. The main objective of these re-
sults is to derive efficient MapReduce algorithms requiring
a very small number of MapReduce rounds. However, as
shown in [1], a MapReduce algorithm using a small number
of rounds must generate large amount of intermediate data
that travel over the network during the shuffle operation.
Since the amount of this intermediate data can be much
larger than the input size, issues related to the performance
of the network and to system failure may arise with mas-
sive input graphs. Indeed, the network may be subject to



congestion since a large amount of data is created and sent
over the network in a small time interval (i.e., during the
shuffle step), reducing the scalability and fault tolerance of
the network. It is then desirable to design algorithms that
tradeoff round number and decrease the amount of data ex-
changed during a round, even at the cost of a larger number
of rounds. Moreover, we observe that distributing a large
computation among different rounds may help to bookkeep
the computation and thus to restore it if the system com-
pletely fails or if, in the case of cloud services, the computing
cost exceeds a given threshold.

In this paper, we address this issue by proposing a new
multi-round MapReduce randomized algorithm for enumer-
ating all triangles that, by increasing the number of rounds,
reduces the maximum amount of intermediate data required
during each round. The algorithm exhibits a tradeoff among
the number R of rounds, the maximum amount m of mem-
ory words required by each reducer, and the total amount
M of space required in a round. Specifically, we have

R = O
(
E3/2/(M

√
m)
)

, where E is the number of edges

in the input graph. Our algorithm is based on a vertex
partitioning as other previous MapReduce algorithms [34,
1, 29]. However, our partitioning relies on a 4-wise inde-
pendent hash function which allows us to improve previous
analyses that assume a random input graph: we guarantee
the claimed results for any input graph. Moreover, 4-wise
hash functions can be easily and efficiently implemented us-
ing the tabulation based technique in [35].

1.1 Contributions
Our main contributions are summarized as follows:

• We propose Colored Triangle Type Partition (CTTP),
a multi-round MapReduce randomized algorithm for
enumerating all triangles in an enormous graph. The

algorithm requires O
(
E3/2/(M

√
m)
)

rounds in the

worst case. In each round, the total amount of space
required by CTTP is M , each mapper uses M/E
space, and each reducer uses m space (quantities ex-
pressed in memory words). Moreover, the algorithm

requires O
(
E3/2

)
total work in expectation, match-

ing the best-known sequential algorithms. The claimed
bounds are shown to be optimal.
• We show how the CTTP algorithm can be improved in

order to get strong guarantees on the maximum load
of each reducer with high probability. Specifically, we
show that the aforementioned expected bounds on the
space requirements and total work apply with proba-

bility at least 1 − 1/Eε when m = Ω
(
E3/4√logE

)
.

This result shows how to get rid with high probabil-
ity of the “curse of the last reducer” [34], that is of
an uneven distribution of the total work among the
reducers.
• CTTP is experimentally evaluated using several real-

world datasets. CTTP is always faster than re-
cent MapReduce algorithms for triangle enumeration,
showing up to 2× performance improvement. Exper-
iments also show that there is little overhead in dis-
tributing the computation to multiple rounds. Fur-
thermore, by exploiting multiround, we are able to
successfully process new datasets where previous algo-
rithms failed because of enormous intermediate data.

Table 1: The notations used in the paper.

Notation Explanation

E The number of edges
m Memory size of a reducer
M Total data space of all machines
R The number of rounds
ρ The number of vertex colors
K The number of subproblems
Kr The number of subproblems solved in r-th round
ξ(x) Color of vertex x.
Ei,j Set of edges (a, b) such that min{ξ(a), ξ(b)} = i

and max{ξ(a), ξ(b)} = j

We remark that the stated bounds apply for each input
graph, and do not assume the input to be a random graph
as in previous works.

We provide binary file of CTTP and datasets used for the
experiments in http://kdm.kaist.ac.kr/cttp.

1.2 Paper Organization
The remaining part of the paper is organized as follows. In

Section 2, previous works related to the triangulation prob-
lem and MapReduce are reviewed. In Section 3 we formal-
ize the problem and describe the MapReduce computational
model. In Section 4, the CTTP algorithm is described and
analyzed. In Section 5, we show the experimental results.
In Section 6, some final comments are provided.

2. RELATED WORK

2.1 Triangle Enumeration
The enumeration problem has been recently targeted in

the external memory model, that is on a disk-memory hier-
archy where the memory has size m and data are trans-
ferred in blocks of size B. In particular, Chu et al.
and Hu et al. [7, 17] have proposed deterministic algo-
rithms requiring O

(
E2/(mB)

)
I/Os, while Pagh and Sil-

vestri [28] proposed an optimal randomized algorithm re-

quiring O
(
E3/2/(B

√
m)
)

. Goodrich and Pszona [13] have

described an efficient algorithm requiring O ((E/B) logM E)
I/Os for graphs with constant arboricity, while Chiba and
Nishizeki have proposed a general RAM algorithm requiring
O (αE) work for graphs with arboricity α. The relations
between listing and other problems have also been widely
investigated, see for instance Williams and Williams [39] for
a reduction to matrix multiplication, and Jafargholi and Vi-
ola [18] for 3SUM/3XOR. Triangle listing in certain classes
of random graphs has been addressed recently by Berry et
al. [3] to explain the empirically good behavior of simple tri-
angle listing algorithms. For the related problem of counting
the number of triangles in a graph, we refer to [24] and ref-
erences therein.

Triangle enumeration has been explicitly addressed in the
MapReduce framework by Afrati et al. [1]. However, the
MapReduce algorithms for triangle counting proposed by
Suri and Vassilvitskii [34] and by Park and Chung [29] can be
easily adapted to triangle enumeration. All these algorithms
require just O (1) MapReduce rounds, but replicate each

edge Θ
(√

E/m
)

times on the average, where m denotes

the available space of a reducer. All these algorithms rely on
a vertex partitioning that split the problem into (E/m)3/2

subproblems, each one solved in a reducer of size O (m) in



a single round. We observe that the vertex partitions pro-
posed by the previous works provide balanced subproblems
only assuming an input random graph, and fail for some spe-
cial graphs such as complete graphs. Finally, we recall that
MapReduce algorithms exhibiting tradeoffs between round
number, reducer size and total memory have been studied
in [4, 30] for sparse and dense matrix multiplication.

2.2 Hadoop and MapReduce
MapReduce is a popular distributed programming

framework [10] for processing very large amount of data.
MapReduce has several advantages: (a) it allows program-
ming for distributed systems easy; (b) it provides fault-
tolerance; (c) it is highly scalable; and (d) it requires
a relatively cheap cost to build and maintain a cluster.
MapReduce, and its open source version Hadoop [16], have
been used for many important graph mining tasks, like ra-
dius/diameter [23], graph queries [22], triangle [21], and vi-
sualization [20].

3. PRELIMINARIES

3.1 Computational Model
Our algorithms are designed and analyzed in the computa-

tional model for MapReduce, named MR(m,M), proposed
in [30]. The model is defined in terms of two parameters
m and M , characterizing the maximum amount of mem-
ory available to a map/reduce function, and the maximum
amount of memory available in the whole system, respec-
tively.

An algorithm in this model specifies a sequence of rounds.
The computation within each round is defined by map and
reduce functions whose input and output are multisets of
key-value pairs. A pair is denoted as 〈k; v〉, where k is the
key and v the value. Function map takes as input one pair
and outputs a multiset of new pairs. Function reduce re-
ceives as input pairs with the same key and outputs a mul-
tiset of new pairs. We use the keyword emit(〈k; v〉) within
a map/reduce function for specifying that the pair 〈k; v〉 is
an output pair.

The r-th round, for each r ≥ 0, is organized as follows.
The input of the round is a multiset Ir of pairs. A new mul-
tiset Wr is then generated by applying the map function to
each pair in Ir (map step); we call mapper each application
of the map function. Subsequently, pairs in Wr with the
same key are grouped together (shuffle step). Finally, each
group of pairs with the same key is processed by the reduce
function, and the multiset Or containing the output of the
applications of the reduce function to each group is the final
output of the round (reduce step). We denote with reducer
a single application of the reduce function. Multiset Or can
be the input of the next round r+ 1. Let mk,r be the space
required for computing the reduce function on the group de-
fined by key k in round r, and let Kr be the set of distinct
keys in Wr. Then, the model requires that mk,r ≤ m for
each k ∈ Kr and r ≥ 0, and that

∑
k∈Kr

mk,r ≤M for each
r ≥ 0. Similar constraints are required for the map function.

The complexity of an algorithm in the MR(m,M) model
is the number of rounds R that it executes in the worst case.
The goal is to minimize the round number for given values
of m and M . We also define the total work of an algorithm
in MR(m,M) as the sum of the work requirement of all
mappers and reducers.

3.2 Problem Specification
We consider a simple, undirected graph G (no self loops,

no parallel edges) with vertex set V and edge set E. The
enumeration problem requires to enumerate all triangles
within the graph G. We do not require the algorithm to
emit a pair for each triangle, but we simply assume that for
each triangle (u, v, w) the algorithm calls a local function
enum(·) with the triangle vertexes as input parameters.

For notational convenience and consistency with earlier
papers, whenever the context is clear we use E as a short-
hand for the size of a set E (and similarly for other sets).
We will assume that the elements of V are ordered accord-
ing to degree, breaking ties among vertices of the same de-
gree arbitrarily. We assume that each edge {u, v} requires
one memory word, and is initially represented by the pair
〈ψ; (u, v)〉, where (u, v), with u < v, denotes the value and ψ
a dummy key. Following [17], for a triangle (v1, v2, v3), with
v1 < v2 < v3, we call the edge (v2, v3) its pivot edge, and
the vertex v1 its cone vertex. For any integer n, we denote
with [n] the set {0, . . . , n− 1}.

For the sake of simplicity, we assume there are no very
high degree vertexes, that is, vertexes with degree larger than√
Em. We observe that triangles with at least one high de-

gree vertex can be enumerated using sorting. Specifically,
for each very high degree vertex v, all triangles containing v
are found by suitably sorting three times the edge sets E as
shown in [28, Lemma 1]. The sorting operation can be car-
ried out using the MapReduce algorithm proposed in [14],
which requires O (1) rounds as soon as the reducer size m

is larger than
√
E. Since E aggregate space is required for

finding all triangles with a given very high degree vertex,
M/E very high degree vertexes can be processed in parallel.
Thus all triangles with at least one very high degree vertex

are enumerated in O
(
E3/2/(M

√
m)
)

rounds, using reduc-

ers of size m, constant size mappers, aggregate space M and

total work O
(
E3/2

)
. We observe that the round complexity

and the total work for removing very high degree vertexes
are asymptotically negligible compared with the ones of the
CTTP algorithm described in the next section.

4. PROPOSED METHOD
In this section we propose Colored Triangle Type Partition

(CTTP), a MapReduce algorithm for triangle enumeration
that exhibits a tradeoff between the number of rounds R, the
space m required by each mapper or reducer, and the total
aggregate space M . For arbitrary input graph, CTTP re-

quires R = O
(
E3/2/(M

√
m)
)

rounds and guarantees that

each mapper and reducer requires space M/E and expected
space m, respectively. We then show how to get rid of the
“curse of the last reducer” in high probability with minor
changes to the CTTP algorithm. As already mentioned we
suppose for simplicity that there are no very high degree
vertexes (i.e., vertexes with degree larger than

√
Em); we

refer to Section 3.2 for an approach that enumerates all tri-
angles with at least one very high degree vertex with the
same asymptotic round complexity of the CTTP algorithm.

The CTTP algorithm is based on vertex partitioning as
many other previous MapReduce algorithms [34, 1, 29].
CTTP, howerver, partitions vertexes according with a col-
oring function randomly selected from a 4-wise independent
family of functions, as suggested in [28] for triangle enu-



meration in external memory. By just requiring 4-wiseness
to the coloring function, our technique overcomes previous
analyses that assume a random input graph, and guarantees
that the claimed result applies to any input graph.

The vertexes are colored with ρ = d
√

6E/me colors us-
ing a function ξ : V → [ρ] chosen uniformly at random
from a 4-wise independent family of functions. We let Ei,j ,
with i ≤ j and i, j ∈ [ρ], denote the set {(u, v) ∈ E|i =
min{ξ(u), ξ(v)} and j = max{ξ(u), ξ(v)}}. As in [29], a tri-
angle (u, v, w) is classified type-3 if no two vertexes of the
triangle have the same color, type-2 if there are exactly two
vertexes with the same color, and type-1 if all vertexes have
the same color.

The CTTP algorithm decomposes the enumeration prob-
lem into K =

(
ρ
3

)
+
(
ρ
2

)
= ρ(ρ2 − 1)/6 subproblems. The

subproblems are of two types:

1. (i, j, k)-subproblem, with i < j < k and i, j, k ∈ [ρ]:
the algorithm finds all type-3 triangles of G where the
vertexes are colored with colors i, j, k. It is easy to
see that the three edge sets Ei,j , Ei,k, Ek,j suffice for
solving the subproblem. There are

(
ρ
3

)
subproblems of

this kind.
2. (i, j)-subproblem, with i < j and i, j ∈ [ρ]: the algo-

rithm finds all type-1 and type-2 triangles of G where
the vertexes are colored with colors i or j. It is easy
to see that the three edge sets Ei,j , Ei,i, Ej,j suffice for
solving the subproblem. There are

(
ρ
2

)
subproblems of

this type.

The CTTP algorithm solves each subproblem within a
single reducer, by evenly distributing the K subproblems
among R = ρE/M rounds. The pseudocode of the r-round,
for each 0 ≤ r < R is given in Algorithm 1. The input of
each round is a set of pairs 〈ψ; (u, v)〉 where (u, v) is an edge
in E and ψ is a dummy symbol.

In the r-round, CTTP solves the (i, j, k)-subproblem, for
each 0 ≤ i < j < k < ρ with i+ j+k ≡ r mod R, in the re-
ducer associated with key (i, j, k), and the (i, j)-subproblem,
for each 0 ≤ i < j < ρ with i+ j ≡ r mod R, in the reducer
associated with key (i, j,−1). Mappers are responsible for
forwarding each edge to the right reducers. For each input
pair 〈ψ; (u, v)〉, the mapper sends the following messages (let
i = min{ξ(u), ξ(v)}, j = max{ξ(u), ξ(v)}):

1. Case i 6= j. For each 0 ≤ k < ρ such that k ≡
r − i − j mod R, k 6= i, k 6= j, CTTP emits the
pair 〈(k, i, j); (u, v)〉 if k < i, or 〈(i, k, j); (u, v)〉 if
i < k < j, or 〈(i, j, k); (u, v)〉 if j < k. Also, CTTP
emits 〈(i, j,−1); (u, v) if i+ j ≡ r mod R.

2. Case i = j. For each 0 ≤ k < ρ such that k ≡ r − i
mod R, k 6= i, CTTP emits the pair 〈(k, i,−1); (u, v)〉
if k < i, or 〈(i, k,−1); (u, v)〉 if i < k.

We observe that the proposed distribution of subproblems
among rounds guarantees that each mapper emits the same
number of pairs (i.e., ρ/R = Θ (M/E) emitted pairs per
mapper in each round). Therefore, the work of the map
step can be evenly distributed among the available process-
ing units by the runtime schedule, avoiding that the compu-
tation is delayed by a few slow mappers. In contrast, other
distributions may require some mappers to emit much more
pairs than others. For instance, by lexicographically sort-
ing the triplets/pairs denoting subproblems and then solv-
ing each chunk of consecutive E/m subproblems in a round,
we get that a few mappers emit up to E/m pairs each, while
the remaining mappers emit just a constant number of pairs.

Algorithm 1: Map and reduce functions in the r-th
round of CTTP.
Map: input pair 〈ψ; (u, v)〉
1: i = min{ξ(u), ξ(v)}, j = max{ξ(u), ξ(v)}
2: if i 6= j then
3: k′ ← r − i− j mod R
4: if i+ j ≡ r mod R then emit 〈(i, j,−1); (u, v)〉
5: for ` = 0 to ρ/R− 1 do
6: k ← k′ + `R
7: if k < i then emit 〈(k, i, j); (u, v)〉
8: if i < k < j then emit 〈(i, k, j); (u, v)〉
9: if j < k then emit 〈(i, j, k); (u, v)〉

10: else
11: k′ ← r − i mod R
12: for ` = 0 to ρ/R− 1 do
13: k ← k′ + `R
14: if k < i then emit 〈(k, i,−1); (u, v)〉
15: if i < k then emit 〈(i, k,−1); (u, v)〉
Reduce: input 〈(i, j, k);E′ = Ei,j ∪ Ej,k ∪ Ei,k〉 if k ≥ 0, or
〈(i, j, k);E′ = Ei,j ∪ Ei,i ∪ Ej,j〉 if k = −1

1: if k ≥ 0 then
2: Find all type-3 triangles in E′ with colors i, j, k
3: else
4: Find all type-2 triangles in E′ with colors i, j
5: Find all type-1 triangles in E′ with color i or j.

4.1 Analysis
Let K = ρ(ρ2− 1)/6 be the total number of subproblems.

It is easy to see that O (K/R) subproblems are solved in
each round. However, the next lemma shows that exactly
K/R subproblems are solved in each round if R is not a
multiple of 2 or 3, and that the deviation from K/R is at
most 7ρ/(6R) otherwise.

Lemma 1. Let K = ρ(ρ2 − 1)/6 be the total number of
subproblems and let Kr be the number of subproblems solved
in the r-th round. Then, Kr = K/R if R 6≡ 0 mod 2 and
R 6≡ 0 mod 3, and K/R−5ρ/(6R) ≤ Kr ≤ K/R+7ρ/(6R)
otherwise.

Proof. Let K′r be the number of (i, j, k)-subproblems
solved in a round. We recall that a (i, j, k)-subproblem is
solved in the r-th round if the following congruence is veri-
fied:

i+ j + k ≡ r mod R. (1)

It is easy to see that K′r = K∗r /3!, where K∗r be the number
of triplets (i, j, k) with i, j, k ∈ [ρ] and i 6= j 6= k (i.e.,
no assumption on the order) satisfying Equation 1: indeed
all and only the 3! permutations of each triplet in K′r are
in K∗r . For any given values of i and j in [ρ], there are
ρ/R values of k that verify the congruence k ≡ r − i − j
mod R. Since there are ρ2 combinations of i, j we get that
there are ρ3/R triplets satisfying Equation 1. However, this
number also contains triplets with two or three equal terms.
We now count the number of triplets with only two or one
distinct values. The number of triplets (i, i, j), (i, j, i), (j, i, i)
with i, j ∈ [ρ] satisfying Equation 1, that is 2i + j ≡ r
mod R, is ρ2/R. Note that this number contains also the
triplets (i, i, i) satisfying the congruence. The number of
triplets (i, i, i) satisfying Equation 1, that is 3i ≡ r mod R,
depends on the value of R. If R 6≡ 0 mod 3, then 3i ≡ r
mod R has ρ/R solutions for any r. If R ≡ 0 mod 3, then
3i ≡ r mod R has no solution when r 6≡ 0 mod 3, and
3ρ/R solutions when r ≡ 0 mod 3.



By the above arguments, we have that K′r = (ρ3/R −
3(ρ2/R− ρ/R)− ρ/R)/3! =

(
ρ
3

)
/R if R 6≡ 0 mod 3. On the

other hand, we have for R ≡ 0 mod 3 that K′r = (ρ3/R −
3(ρ2/R − 3ρ/R) − 3ρ/R)/3! =

(
ρ
3

)
/R + 2ρ/(3R) if r ≡ 0

mod 3 and K∗r = (ρ3/R − 3ρ2/R)/3! =
(
ρ
3

)
/R − ρ/(3R) if

r 6≡ 0 mod 3.
Consider now the number K′′r of (i, j)-subproblems. Us-

ing an argument similar to the previous one we get that
K′′r = ρ(ρ − 1)/(2R) =

(
ρ
2

)
/R if R 6≡ 0 mod 2, K′′r =

ρ(ρ− 2)/(2R) =
(
ρ
2

)
/R− ρ/(2R) if R ≡ 0 mod 2 and r ≡ 0

mod 2, and K′′r = ρ2/(2R) =
(
ρ
2

)
/R + ρ/(2R) if R ≡ 0

mod 2 and r ≡ 0 mod 2.
The lemma then follows by summing up K′r and K′′r in

the different cases.

We are now ready to prove the claimed performance of
the CTTP algorithm.

Theorem 1. The CTTP algorithm correctly enumerates

all triangles of the input graph in (E/M)
⌈√

6E/m
⌉

rounds.

In each round, each mapper and reducer requires space M/E
and expected space m, respectively, and the aggregate space

is M . The total expected work is O
(
E3/2

)
.

Proof. It is easy to see that each (i, j, k)-subproblem is
evaluated once during round r = i+j+k mod R. Moreover,
all edges E′ = Ei,j ∪ Ej,k ∪ Ei,k required for solving the
subproblem are available to the reducer. Indeed, for each
edge (u, v) ∈ Ei,j the mapper receiving the pair 〈ψ; (u, v)〉
creates a message 〈(i, j, k′); (u, v)〉 with k′ = k (Line 9 of
Algorithm 1). Similarly for edges in Ej,k and Ei,k. An
equivalent argument shows that all (i, j)-subproblems are
correctly solved.

Since each mapper emits M/E pairs, a mapper clearly
requires M/E space. On the other hand, the expected size
of each reducer is m since it receives three sets of expected
size m/3 each. At any time, the aggregate space is M since
there are at most M/E copies of each edge.

We now upper bound the work for solving (i, j, k)-
subproblems. Let Ei,j , Ej,k and Ei,k be the random
variables representing the input size of the three sets re-
ceived by the reducer with key (i, j, k). Using any work-
efficient sequential algorithm (see e.g. [17, 28]) within each
reducer, we get that the work required by the reducer

is O
(

(Ei,j + Ej,k + Ei,k)3/2
)

= O
(
E

3/2
i,j + E

3/2
j,k + E

3/2
i,k

)
.

The total work T can thus be upper bounded as follows:

T = O

 ∑
(i,j,k)

(
E

3/2
i,j + E

3/2
j,k + E

3/2
i,k

) = O

ρ∑
(i,j)

E
3/2
i,j

 .

Let L (resp., S) be the set of pairs (i, j) for which Ei,j > m
(resp., Ei,j ≤ m). Thus

T = O

ρ ∑
(i,j)∈S

m
3/2

+O

ρ ∑
(i,j)∈L

E2
i,j√
m

 .

The expected work of T is then

E(T ) = O
(
E

3/2
)

+O

ρE
(∑

(i,j)∈L E
2
i,j

)
√
m


By [28, Lemma 2], E

(∑
(i,j)∈LE

2
i,j

)
is upper bounded by

O (Em) when the maximum degree of the graph is
√
Em.

Thus E(T ) = O(E3/2). Since the total work for solving
(i, j)-subproblems is negligible, the claim follows.

Finally, we observe that our algorithm is optimal by de-
riving a lower bound on the round number required by an
algorithm for triangle enumeration. We assume that each
edge or vertex requires at least one memory word: that is,
at any point in time there can be at most m edges/vertexes
in a reducer of size m. This assumption is verified by our al-
gorithm, and is similar to the indivisibility assumption which
is usually required for deriving lower bounds on a memory
hierarchy.

Theorem 2. Any algorithm using reducers of size m
and aggregate space M requires, even in the best case,
bt/(M

√
m)c rounds to enumerate t distinct triangles. The

CTTP algorithm is then asymptotically optimal in the worst
case.

Proof. Without loss of generality, we ignore mappers
since they would decrease the lower bound by just a con-
stant factor (in fact, as already noticed in [26], a reduce
step can clearly embed the subsequent map step so that a
MapReduce computation can be simply seen as a sequence
of rounds of reduce steps). A reduce with size m cannot enu-

merate more than m3/2 triangles [28] by the initial assump-
tion on the memory words required by each edge/vertex.
Then the maximum number of triangles that can be enu-

merated in a round is
∑
i∈Γ m

3/2
i , where Γ is the set of keys

in the round and mi is the size required by reducer with key
i. Since

∑
i∈Γ mi ≤M and mi ≤ m, we get that the summa-

tion is upper bounded by M
√
m (i.e., when there are M/m

reduces of size m). Then, at least bt/(M
√
m)c rounds are

required for enumerating t distinct triangles. Since there ex-

ists a graph with t = Ω
(
E3/2

)
(a complete graph with

√
E

vertexes) the worst-case optimality of CTTP follows.

We observe that the lower bound proposed by Afrati et
al. [1] for triangle enumeration in MapReduce does not apply
in our settings. Indeed, they show that a one-round algo-
rithm requires in the worst case at least aggregate memory
M = Ω

(
V 3/
√
m
)
, where V is the vertex number. This

bound can also be derived as a special case of Theorem 2.

4.2 Getting the High Probability
We now show how the vertex coloring in the CTTP algo-

rithm can be improved in order to get strong guarantees on
the maximum load of each reducer. As in the previous sec-
tion, we assume vertex degree to be not larger than

√
Em.

For the sake of simplicity, the results in this section are pro-
vided in asymptotic notation, although exact bounds can be
derived as in the previous section with simple but tedious
derivations.

We use two different coloring techniques for high degree
vertexes (i.e., with degree in (

√
E,
√
Em]) and for low degree

vertexes (i.e., with degree in [0,
√
E]). Low degree vertexes

are colored using a coloring function ζ : V → [ρ] randomly
chosen among a set of logE-wise functions. On the other
hand, the coloring of high degree vertexes is deterministi-
cally computed as suggested in [32] for subgraph enumera-
tion in external memory. Namely, high degree vertexes are
colored using ρ colors in such a way that the sum of the
degrees of vertexes with the same color is Θ(

√
Em). It is

easy to see that vertex degree can be computed by sorting
the edge set E, while the coloring of the at most 2

√
E high

degree vertexes can be computed within a single reducer as
soon as m = Ω(

√
E).



Theorem 3. The CTTP algorithm with the above color-
ing technique enumerates all triangles of the input graph in

O
(

(E/M)
⌈√

E/m
⌉)

rounds. The algorithm uses O (M/E)

space per mapper and O (M) aggregate total space. More-

over, if m = Ω
(
E3/4√logE

)
, then it holds with probability

at least 1− 1/Eε, for any constant ε > 0, that each reducer

requires O (m) space and the total work is O
(
E3/2

)
.

Proof. In [32, Theorem 3], it is proved that the prob-
ability that Ei,j = O (m) for any given color pair (i, j) is

1−1/E as soon as m = Ω̃
(√

E
)

if each low degree vertex is

colored by assigning a random color in [ρ] independently and
uniformly. The proof relies on a result by [19] for providing
strong bounds on the sum of dependent random variables.
However, by using a result in [15] instead of the one by [19]
within the proof of [32, Theorem 3], it is possible to extend
the result to the case low degree vertexes are colored with a

logE-wise hash function assuming m = Ω
(
E3/4√logE

)
.

Consider the edge set E′ containing edges adjacent to only
low degree vertexes, and let Ye for e ∈ E′ be an indicator
variable set to 1 if e is in Ei,j and 0 otherwise. We clearly
have |Ei,j ∩ E′| =

∑
e∈E′ Ye. Since Ye and Ye′ are depen-

dent if e and e′ share a vertex in G and vertexes are col-
ored using logE-wise functions, we use the result by Grad-
wohl and Yehudayoff [15, Theorem 3.1] for providing a devi-
ation bound on the sum of the dependent random variables
Ye. It follows that |Ei,j ∩ E′| = O (m) with probability

1− O
((

(E3/4√logE)/m
)logE

)
(it follows from [15] since

we use logE-wise hash functions and a random variable Ye
depends on the at most 2

√
E random variables of adjacent

edges).
Consider now the edge set E′′ containing edges connecting

high degree vertexes of colors i or j to low degree vertexes.
By the coloring of high degree vertexes, we have that E′′ =

O
(√

Em
)

. Let Ze for each e ∈ E′′ be an indicator variable

set to 1 if the low degree vertex of e has color i or j. We have
|Ei,j ∩E′′| ≤

∑
e∈E′ Ze (note that Ze = 1 even if vertexes in

e have both color i). Since these variables are dependent, we
use again [15, Theorem 3.1], getting that |Ei,j∩E′′| = O (m)

with probability 1−O
((

(E3/4√logE)/m
)logE

)
(it follows

from [15] since we are using logE-wise hash functions and

a random variable Ze depends on the at most 2
√
E random

variables of edges adjacent on the low degree vertex of e).
Finally, consider edges connecting only high degree ver-

texes. There cannot be more than O (m) of these edges in
Ei,j since there are at most Θ (

√
m) high degree vertexes

with the same colors.
Therefore, the set Ei,j for a given color pair (i, j) has size

O (m) with probability 1 − O

((
(E3/4 logE)/m

)logE
)

.

By applying an union bound, we get that all
edge sets Ei,j have size O (m) with probability

1 − (E/m)O

((
(E3/4√logE)/m

)logE
)
≥ 1 − 1/Eε

by setting m ≥ αE3/4√logE with α = 2ε+1/4. Since
the size of each reducer if O (m) with probability at least
1 − 1/Eε, the upper bound on the work complexity easily
follows.

Table 2: The summary of datasets. 1

Dataset Nodes Edges Triangles
File Size

Original Pre-
processed

LiveJournal2 4.8 M 4.3 M 285730264 1 GB 679 MB
PhoneCall 30 M 0.2 B 149045937 28 GB 5.6 GB

Twitter3 42 M 1.2 B 34824916864 26 GB 23 GB
SubDomain4 0.1 B 1.9 B 417761664336 36 GB 36 GB
YahooWeb5 1.4 B 6.4 B 85782928684 120 GB 120 GB
ClueWeb096 4.8 B 7.9 B 31013037486 72 GB 153 GB

5. EXPERIMENTS
In this section, we experimentally evaluate the proposed

algorithm and compare it to recent MapReduce algorithms
for triangulation. We aim to answer the following questions
from the experiments.

Q1 How does the number of round affect the performance
of CTTP?

Q2 Is CTTP scalable in terms of the size of data and the
number of machines?

Q3 Does CTTP work well with real world datasets?

We first introduce the datasets which are used for the ex-
periments, and we specify how to implement the algorithms
in Section 5.2. After that, we answer the questions in sec-
tion 5.3 by presenting the result of the experiments.

5.1 Datasets
We use real-world datasets listed in Table 2 to evaluate the

proposed algorithm. They are brought from various sources.
LiveJournal is an online community for sharing journals, and
the LiveJournal dataset is the friendship network of the com-
munity [33]. The PhoneCall dataset is a list of phone call
records on December 2007 and on January 2008. It is of-
fered by an anonymous telecommunication service provider.
The Twitter dataset is the ‘following’ network of Twitter, a
famous social network service [25]. The SubDomain dataset
contains links among subdomains on the Web [27]. The Ya-
hooWeb dataset is a page level hyperlink graph [40]. The
largest one used in the experiments, the ClueWeb09 dataset
is another page level hyperlink graph [38].

Each dataset is preprocessed to be a simple undirected
graph. If a pair of vertexes has two edges (a, b) and (b, a),
one of them is deleted from the graph. If an edge appears
multiple times in a dataset, all of the duplicate edges are
removed except one. We also remove all self-loop edges of
which source and destination vertexes are the same. This
procedure can be simply implemented on MapReduce and
the running time is O(E) which is dominated by the running
time of the main algorithms. We exclude the preprocessing
time when we analyze the running time of all algorithms
because they need the same preprocessing before execution.

1
Links to the datasets are in http://kdm.kaist.ac.kr/cttp

2
http://snap.stanford.edu/data/soc-LiveJournal1.html

3
http://an.kaist.ac.kr/traces/WWW2010.html

4
http://webdatacommons.org/hyperlinkgraph

5
http://webscope.sandbox.yahoo.com

6
http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?

page=Web+Graph



5.2 Implementation
We compare the proposed algorithm (CTTP) with the

recent MapReduce algorithms (TTP [29] and GP [34]) for
triangulation. The proposed algorithm and the compared
algorithms are written in Java programming language and
they are executed on Hadoop which is regarded as the de
facto standard implementation of MapReduce. All experi-
ments are conducted on a Hadoop cluster at KAIST with
40 machines where each machine has 4GB of memory. The
default number of reducers is set to 80.

The number ρ of partitions (or colors) for GP and TTP is

set to
√

9E/m and
√

6E/m, respectively, for the following
reason. Let us assume that a dataset is divided into ρ parti-
tions. When we suppose that edges are evenly distributed,
the probability that vertexes incident to an edge belong to
a specific partition is 1/ρ2; this kind of edge is called inner-
edge. Similarly, the probability that the vertexes incident to
an edge belong to two specific partitions is 2/ρ2; this type
of edge is called outer-edge. It indicates that the probabil-
ity that an edge belongs to a subproblem (i, j, k) of GP is
3 × 1/ρ2 + 3 × 2/ρ2 = 9/ρ2 because there are three cases
of inner-edge, i, j, and k, and three cases of outer-edge,
(i, j), (i, k), and (j, k); thus the expected number of edges
in a subproblem of GP is 9E/ρ2. All edges in a subproblem
should fit in the memory of a reducer, i.e. 9E/ρ2 ≤ m, and

it leads to set ρ to
√

9E/m. TTP processes two types of
subproblems, (i, j, k) and (i, j). In contrast with GP, a sub-
problem (i, j, k) in TTP has no inner-edge, and it indicates
that the expected number of edges in a subproblem (i, j, k) is
6E/ρ2. The expected number of edges in a subproblem (i, j)
is 4E/ρ2 which is smaller than a subproblem (i, j, k). Thus,

we set ρ to
√

6E/m for TTP. The number ρ of colors for

CTTP is set to
√

6E/m, the same as that of TTP, because
CTTP and TTP process exactly the same subproblems.

As we mentioned in Section 4, the number R of rounds
of CTTP is O(ρE/M). In our experiments, we suppose a
poor condition where the total available space M is only the
input size E, i.e. M = E, so R is set to ρ in Section 5.3.2,
5.3.3, and 5.3.4. We make an exception if the ρ is smaller
than

√
6r + 1 where r is the number of reducers. As already

mentioned, the number K of subproblems is ρ(ρ2 − 1)/6. If
R = ρ, the number Kr of subproblems solved in a round
is (ρ2 − 1)/6. If Kr < r, CTTP cannot utilize all reducers
since several reducers do nothing and just waiting until the
other reducers finish. In fact, such situation occurs when
the input dataset is so small compared to M . In this case,
we set R to 1 as in the previous algorithms.

5.3 Experimental Results
In this section, we present the experimental evaluation an-

swering the questions listed in the beginning of Section 5.
The result tells us that 1) the number of rounds affects the
performance of CTTP with a small factor, and the addi-
tional cost is much smaller than the total cost, 2) CTTP
is very scalable in terms of data size, and its machine scal-
ability is close to the optimum, and 3) CTTP works very
well with real world datasets, and outperforms the recent
algorithms.

5.3.1 Effect of Number of Rounds
In CTTP, the number R of rounds is O(E3/2/M

√
m).

While the number E of edges are determined by the in-
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Figure 1: Effect of the number of rounds. It shows
the running time and the shuffled data size per
round with various total number of rounds on the
Twitter dataset. The dotted line in (a) is the ex-
pected result from the cost function of Equation 6.
With R ≥ 4, the result is almost the same as ex-
pected. With R < 4, however, the result shows much
higher running time than our expectation because
of the massive intermediate data which deplete the
disk I/O performance and network speed. (b) shows
the trade-off relationship between the total number
of rounds and the size of shuffled data per round.

put data, the memory space m of a reducer and the total
available space M of a cluster is determined by the system.
Besides, even in the same system, M changes from time to
time. It means that R can vary on the same input data
and the same system. Then our question is that how the
performance of CTTP is affected by the number of rounds.
We, first, set the simplified cost function of CTTP focus-
ing on the number of rounds. After that, we analyze and
compare the experimental result with the cost function. In
the cost function, we suppose that the disk I/O speed and
the network speed are not affected by the amount of pro-
cessed data. The details of the cost function is described in
Section 4 of [9].

A MapReduce job of CTTP consists of a map step, a shuf-
fle step, and a reduce step. We let CostM(µ, s), CostS(τ, s),
and CostR(τ, s,Kr) be the cost of each step for a round
where µ and τ are the numbers of mappers and reducers,
respectively, s is the input data size of each step, and Kr is
the number of subproblems solved in the job. CostM(µ, s)
contains the cost for starting µ mappers and loading the
input data into memory. It is formulated as follows:

CostM(µ, s) = startUpCost(µ) +
s

µ
·

1

Ds

(2)

where Ds is disk I/O speed. CostS(τ, s) is the cost for trans-
ferring data between different machines. It is given by:

CostS(τ, s) =
s ·Dr

τ
·

1

Ns

(3)

where Dr is the ratio of data transferred between different
machines and Ns is the network speed. CostR(τ, s) contains
the cost for starting τ reducers and loading the data trans-
ferred from the shuffle step, and also contains the plugged
in method’s original time complexity. It is given by:

CostR(τ, s,Kr) =startUpCost(τ) +
s

τ
·

1

Ds

+

Kr

τ
· plugInCost(

s

Kr

)

(4)



 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 31 62

R
u

n
n

in
g

 T
im

e
 (

m
in

)

R (total # of rounds)

map step
shuffle step
reduce step

Figure 2: Average running time of each step. When
R < 4, the running time of map and shuffle step is
much longer than in the case of R ≥ 4 while the
running time of reduce step increases linearly as ex-
pected.

Then, the total cost of CTTP with R rounds is given by:

TotalCost(µ, τ, E, ρ,R) = R× CostM(µ,E)+

R× CostS(τ,
(ρ− 1)E

R
) + R× CostR(τ,

(ρ− 1)E

R
,
ρ(ρ2 − 1)

6R
)

(5)

For each round, the whole input data are loaded during
the map step. The shuffle step ships (ρ − 1)E/R data be-
tween different machines, and reducers receive (ρ − 1)E/R
from the shuffle step. By applying Equations 2, 3 and 4 to
Equation 5, we get the following cost:

TotalCost(µ, τ, E, ρ,R) =

(R− 1)× (CostM(µ,E) + startUpCost(τ))+

CostM(µ,E) + CostS(τ, (ρ− 1)E)+

CostR(τ, (ρ− 1)E,
ρ(ρ2 − 1)

6
)

(6)

It indicates that the number of round affects only the factor
CostM(µ,E) + startUpCost(τ). In order to measure the
running time of the factor, we design a DoNothingJob whose
mappers load the input data but does not emit any data, and
reducers are explicitly executed but do nothing. The cost of
the job is exactly the factor of additional cost. The running
time of the DoNothingJob on Twitter dataset is measured
about 45 seconds on average.

Now we are ready to explain the result in Figure 1. Fig-
ure 1(a) shows the running time of CTTP with various round
numbers from 1 to 62. If R > 62, fewer subproblems than
reducers are processed; in this case, some reducer does not
work and only wait for other reducers. The dotted line in
Figure 1(a) shows the expected result from the cost function
of Equation 6. With R ≥ 4, the experimental result is al-
most the same as expected. However, the result shows much
higher running time than our expectation with R < 4. The
reason is that CTTP generates massive intermediate data
in a round when R is small, so the data are overloaded to
mappers in the map step and overburden the network in the
shuffle step. Figure 2 explains the phenomenon well. When
R < 4, the running time of map and shuffle step is much
longer than the case of R ≥ 4 while the running time of re-
duce step increases linearly as expected. Note that Figure 2
shows the average running time of each step, thus the sum
of the running time in this figure differs a little from the real
running time in Figure 1(a).

Figure 1(b) shows the shuffled data size of CTTP with
various total round numbers. As we mentioned in Section
4.1, there is a trade-off relationship between the total num-
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Figure 3: Data scalability of three algorithms. (a)
shows the running time of CTTP, TTP and GP, and
(b) shows the shuffled data size per round on ran-
dom subgraphs with k edges of YahooWeb graph,
varying k from 0.2 to 6.4 billion. Only CTTP suc-
cessfully processed all datasets while GP and TTP
failed to process datasets containing more than 1.6
billion edges. As the graph size increases, the shuf-
fled data size of TTP and GP rapidly increases while
that of CTTP increases linearly with the number of
edges. The enormous shuffled data make TTP and
GP fail due to the lack of space.

ber of rounds and the shuffled data size per round. When
R = 1, the shuffled data size is 985GB; it is almost 30 times
larger than the input file size (32GB). If the shuffled data is
generated enormously in a round, the system will fail due to
the lack of space and heap memory. CTTP can easily avoid
the system failure by increasing the number of rounds while
it takes little more time.

5.3.2 Data Scalability
Data scalability describes how the running time of an algo-

rithm increases as data grow, and how large data can be pro-
cessed by the algorithm. We compare and analyze CTTP to
recent MapReduce triangulation algorithms, TTP and GP,
in terms of data scalability. We run the three algorithms on
random subgraphs with k edges of YahooWeb graph where
k is the number of randomly selected edges from the original
graph. For k, 6.4×109, 3.2×109, 1.6×109, 8.0×108, 4.0×108,
and 2.0× 108 are used.

The experimental results are depicted in Figure 3. It
shows the running time of three algorithms and the shuf-
fled data size per round on random subgraphs of YahooWeb
graph. Only CTTP successfully processes all the subgraphs
while GP and TTP fail to process datasets containing more
than 1.6 billion edges. Figure 3(b) shows the reason of the
failure well. As the graph size increases, the shuffled data
size of TTP and GP rapidly increases, and they cause ‘out
of space’ error when k > 1.6× 109. On the contrary, CTTP
generates small amount of intermediate data whose size in-
creases linearly with the number of edges; thus, it is able to
process much larger datasets compared to TTP and GP.

5.3.3 Machine Scalability
Machine scalability is the degree of performance improve-

ment when the number of machines increases. In order to
evaluate CTTP and competitors with regard to machine
scalability, we run the algorithms on the Twitter datasets
varying the number of mappers and reducers from 10 to
80. The experimental results are depicted in Figure 4. It
shows the speedup factors of three algorithm on the Twitter
dataset. The speedup factor is defined as t20/tr, where tr is
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Figure 4: Machine scalability of three algorithms on
the Twitter dataset. The dotted diagonal line is the
optimum. CTTP is closest to the optimum among
three algorithms. The speedup factor is defined as
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(a) Running time ratio (/CTTP’s)

Dataset CTTP TTP GP

LiveJournal 1 1 1
PhoneCall 6 6 11
Twitter 92 162 302
SubDomain 218 455 1496
YahooWeb 1032 - -
ClueWeb09 1328 - -

(b) Running time (min)

Figure 5: The running time of all algorithms on all
real-world datasets. (a) shows the relative running
time to CTTP and (b) is the list of the running
time. CTTP outperforms the other algorithms in all
datasets and shows more than 2x faster performance
in SubDomain dataset compared to TTP. YahooWeb
and ClueWeb09 datasets are not presented in (a)
because GP and TTP failed on the datasets.

the running time of an algorithm with r reducers. We set
the reference point to the case of 20 reducers instead of 10
reducers since GP failed to run with 10 reducers because of
the lack of space. The dotted diagonal line is the optimum
and its slope is 1/20. The result shows that CTTP pro-
vides the best performance, closest to the optimum among
three algorithms. Furthermore, the result implies that the
performance gap will increase as the number of machines
increases.

5.3.4 Performance on Real-world Datasets
Figure 5 presents the running time of all algorithms on

all datasets. Figure 5(a) shows the relative running time to
CTTP on four datasets where all algorithms run successfully,
and Figure 5(b) shows the running time for every case. In
CTTP, the number R of rounds is set to 1 on LiveJournal
and PhoneCall datasets, and to ρ on the other datasets as
we mentioned in Section 5.2. Only CTTP completed to
enumerate all triangles in the YahooWeb and ClueWeb09
datasets; TTP and GP failed due to the lack of space. In
this figure, we can see that CTTP outperforms the other
algorithms on all datasets, and shows more than 2× faster
performance with SubDomain dataset compared to TTP.
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Figure 6: The shuffled data size of all algorithms
on real-world datasets. In CTTP, the round num-
ber R is 1 on LiveJournal and PhoneCall datasets,
and ρ on the other datasets as we mentioned in Sec-
tion 5.2. CTTP generates the smallest amount of
shuffled data per round. In contrast, TTP and GP
generate a huge amount of shuffled data on Twit-
ter dataset; and they failed to run on YahooWeb
and ClueWeb09 datasets because of the enormous
shuffled data.

Figure 6 shows the shuffled data size of all algorithms for
real-world datasets. It indicates that TTP and GP generate
a huge amount of shuffled data when the input graph is very
large (e.g. Twitter and SubDomain graphs). The algorithms
failed to run on YahooWeb and ClueWeb09 datasets because
of the enormous intermediate data. The shuffled data sizes
of CTTP on LiveJournal and PhoneCall dataset are similar
with that of TTP because R is 1 on the datasets. On the
other datasets, CTTP generates much smaller amount of the
shuffled data compared to TTP and GP due to the effect of
multiple round approach.

6. CONCLUSION
In this paper, we propose CTTP, a multi-round MapRe-

duce randomized algorithm for triangle enumeration. CTTP

requires O
(
E3/2/(M

√
m)
)

rounds in the worst case, and

uses M/E words per mapper, m words in expectation per
reducer, and M words as total aggregate space. More-

over, the algorithm requires O
(
E3/2

)
total work in expec-

tation, matching the best-known sequential algorithms. The
claimed bounds are also shown to be optimal.

We further improve CTTP to get strong guarantees on the
maximum load of each reducer with high probability. Specif-
ically, we show that the aforementioned expected bounds on
the space requirements and total work apply with probabil-

ity at least 1−1/Eε when m = Ω
(
E3/4√logE

)
. This result

shows how to get rid with high probability of the “curse of
the last reducer” [34], that is of an uneven distribution of
the total work among the reducers.

Experiments show that CTTP outperforms the state of
the art MapReduce algorithms on large real world graphs.
Specifically, CTTP outperforms competitors by 2× on a
phone call dataset with 30 million vertexes and 230 million
edges; furthermore, CTTP enumerates 31 billion triangles
of the ClueWeb09 graph with 4.8 billion vertexes and 7.9
billion edges in 23 hours, while competitors fail to run on
the data.
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